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About CEMAC

• Initiated in 2005 by Jane Long, Associate Director,
Energy & Environment Directorate, Lawrence
Livermore National Laboratory – funding provided by
LLNL

• Research team:

– John Weyant, Stanford – Principal Investigator

– Alex Farrell, UC Berkeley

– P. S. Koutsourelakis, Cornell

– Alan H. Sanstad, LBNL

– Sonia Yeh, LLNL

• Goal is to develop advanced quantitative methods for
addressing energy and environmental policy issues
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Policy and methodological context

• Policy problems are increasingly complex and inter-
connected, and must be approached comprehensively -

– GHG emissions reductions and carbon management

– Petroleum supply security and import dependence

– Large-scale transition to a sustainable energy system

• Analytical methods must jointly address a host of factors,
including

– Uncertainty

– Technological innovation

– Outcomes of R&D

– Demand response to prices

– Public policies (e.g. markets vs. command and control)

– Social and political influences and dynamics
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Addressing Long-run Energy-Environmental Issues

• Numerical models are the dominant tool, including
– Computable general equilibrium (CGE)

– Partial equilibrium energy system

– Optimization, mathematical programming

• Key trends in model development have been toward
– Increasing levels of detail and complexity

– Longer time horizons for application to climate and GHG
policy

• The resulting dilemma: Both the detail and the time
horizons are needed for policy-making, but
– “Black-box” problem: Models, and their outputs, may be

very difficult to understand

– Significant but mostly un-analyzed uncertainties in policy
prescriptions, underlying data, model structures and
assumptions, etc.
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Addressing uncertainties using existing models

• Our current focus is analyzing strategies, pathways,
policies, etc., for achieving significant long-run CO2
emissions abatement at “reasonable” cost, e.g.,

– AB32 2050 target

– Bingaman, McCain-Lieberman, and other bills in the U. S.
Congress

• The technical challenge is to

– Address major uncertainties while

– “Leveraging” existing models that are being used to study
this problem but are not designed for uncertainty analysis

– Do this in a way that increases insight rather than
complexity
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MARKAL model output variation 

using Monte Carlo 
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From a forecasting-based to a goal-directed framework

• We approach modeling and analysis of long-run cost
effective abatement as a system design problem
under conditions of

– Uncertainty about future values of key parameters

– Complexity of both the underlying policy problem and the
model(s) we use to analyze it

• We also take into account that the ultimate
“appropriate” emissions reductions targets are
uncertain (although the political process deals with
specific values)
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Defining the problem

• Given

– Probabilistic uncertainties in key model parameters

– Model variables and/or parameters that represent social,
policy, and political decisions determining the
implementation of emissions abatement strategies

we characterize the “policy landscape” and identify
regions likely to meet policy goals

• Our current example: Given

– Uncertainties in characteristics – such as costs – of future
low-carbon technologies, and in fuel prices and

– Low-carbon technology deployment rates as “policy levers,”

What policy choices are likely to succeed in reducing
national energy-sector CO2 emissions by 30-50% by
2050 with no more than a 1% increase in GDP?
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Technical approach

• This fits within the paradigm of certain problems in
engineering reliability theory:

– Choose design features of a complex system under
uncertainty so as to maximize the probability of successful
system performance

• The “complex system” is an existing computer model,
to which we apply methods of computational
statistics and decision analysis within a specially-
designed software environment:

– Sequential importance sampling

– Statistical learning and Bayesian inference
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What “answers” look like

• This overall architecture is that of “inverse”
methodologies: Given a target, goal, or other desired
state, how do you get there?

• We can compute, for example:
– Landscapes or regions that yield specified likelihoods of

meeting the joint emissions/cost criterion

– Regions that yield specified emissions reductions for a given
likelihood

• We can explore global model sensitivities under
uncertainties

• The following graphs illustrate these ideas when the
policy levers are deployment levels of low-carbon
technology deployment, and uncertain parameters
are future technology costs and fuel prices
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Current demonstration project

• “Kernel” model: MARKAL

– Market Allocation - General framework for an energy system
planning model, originally developed at Brookhaven National
Laboratory in the 1970s

– Deterministic inter-temporal linear programming model,
emphasizing technological detail

– We are using the US EPA’s version (database) – time horizon
recently updated to 2050
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Simplified MARKAL “Reference Energy System”
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First experiments:
Electric power and transportation

• Policy questions:

– How can increased deployment of

• Low-carbon generation and efficient electricity end-use
technologies, and

• Biofuels

contribute to meeting long-run cost-effective abatement

goals?

– How do interactions between the electricity and
transportation sectors affect policy choices and outcomes?

• Uncertainties in technology costs, oil and natural gas
prices, feedstock and conversion costs – and
correlations

• Policy levers: Technology R&D, deployment decisions
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Conclusion

• We have developed an analytical and computational
methodology for analyzing complex, long-run
energy/environmental policy problems that
– Addresses fundamental uncertainties in forecasting,

measurement, and model design

– Applies modern tools of computational statistics, decision
analysis, economics, and software engineering

– Leverages existing numerical models, technology
information, and other resources

– Moves from a forecasting to a goal-oriented, system design
paradigm

– Enables identification of robust policy strategies

• Demonstration projects will be completed by
December 2007 – planning and funding solicitations
for future work are underway


